Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(1*R*,8*R*,11*R*)-3,3,11-Trimethyl-6,6-ethylenedioxybicyclo[6.3.0]undecan-2-one and (1*R*,2*R*,8*R*,11*R*)-3,3,11-trimethyl-6,6-ethylenedioxybicyclo-[6.3.0]undecan-2-ol

Yoshinobu Inouye

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

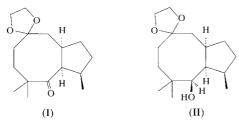
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(1*R*,8*R*,11*R*)-3,3,11-Trimethyl-6,6ethylenedioxybicyclo[6.3.0]undecan-2-one and (1*R*,2*R*,8*R*,11*R*)-3,3,11-trimethyl-6,6-ethylenedioxybicyclo-[6.3.0]undecan-2-ol

Yoshinobu Inouye

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan Correspondence e-mail: inouye@chem.tsukuba.ac.jp


Received 13 June 2000 Accepted 10 July 2000

Data validation number: IUC0000182

The reduction of (1R,8R,11R)-3,3,11-trimethyl-6,6-ethylenedioxybicyclo[6.3.0]undecan-2-one, C₁₆H₂₆O₃, (I), gave exclusively an alcohol, C₁₆H₂₈O₃, (II). The stereochemistry of the hydroxyl group in (II) was shown as *R*. The conformation around the eight-membered carbocycle in (I) differs markedly from that in (II).

Comment

During the course of our synthetic studies on precapnelladiene, one of the terpenoids having an eight-membered carbocycle, we prepared a chiral (1R,8R,11R)-3,3,11-trimethylbicyclo[6.3.0]undeca-2,6-dione (Maeda & Inouye, 1994) as the synthetic intermediate. Because of the flexible nature of an eight-membered ring, it is worthwhile clarifying the conformational change of the eight-membered ring during the reaction. We report here the crystal structures of (1R,8R,11R)-3,3,11-trimethyl-6,6-ethylenedioxybicyclo[6.3.0]undecan-2-one, (I), which was synthesized from the dione, and the corresponding alcohol, (II).

The stereochemistry of the hydroxyl group in (II) was unequivocally confirmed as R, as deduced from its NMR spectrum; the H atom attached at the alcoholic C atom absorbs at δ 3.56 with J = 3.1 Hz. Two independent molecules were found in (II) and these differ only in their conformations around an acetal moiety. On the other hand, the conformation of the eight-membered carbocycle differs markedly in (I) and (II). Torsion angles indicate major differences being found at C atoms 4 and 5. The crystal structure of (I) reveals that the *Re*-side of the carbonyl carbon is protected by the C6-methylene group from an incoming reagent to give an *R* alcohol exclusively. The resulting alcoholic O atom in (II) interacts with the C6-methylene group, giving a conformational change at C atoms 4 and 5.

Experimental

(1*R*,8*R*,11*R*)-3,11,11-Trimethylbicyclo[6.3.0]undecane-2,6-dione (Maeda & Inouye, 1994) was treated with *tert*-butyldimethylsilyl trifluoromethanesulfonate and 1,2-bis(trimethylsilyloxy)ethane at 203 K for 2 h, followed by a further 2 h at room temperature. The solution was filtered through a short silica-gel column with chloroform. After evaporating the solvent, the residue was chromatographed on alumina (benzene) to give (I) in 94% yield. (I) was reduced with LiAlH₄ in dry tetrahydrofuran at 273 K to afford (II) in 96% yield. Compound (I): m.p. 361–362 K (from hexane); found: C 72.35, H 9.67%; calculated for C₁₆H₂₆O₃: C 72.14, H 9.84%. Compound (II): m.p. 418–420 K (from hexane); found: C 71.76, H 10.66%; calculated for C₁₆H₂₈O₃: C 71.60, H 10.52%.

Compound (I)

Crystal data	
$C_{16}H_{26}O_3$ $M_r = 266.37$ Orthorhombic, $P2_{12}_{12}_{12}$ a = 15.594 (3) Å b = 16.837 (2) Å c = 5.6919 (8) Å V = 1494.4 (4) Å ³ Z = 4 $D_x = 1.184$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 10.01-13.57^{\circ}$ $\mu = 0.080 \text{ mm}^{-1}$ T = 293 (2) K Needle, colourless $0.50 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer ω –2 θ scans 2616 measured reflections 2616 independent reflections 1316 reflections with $I > 2\sigma(I)$ $\theta_{max} = 30.51^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.168$ S = 1.0382616 reflections 243 parameters intensity decay: 5.1% H atoms treated by a mixture of independent and constrained refinement

3 standard reflections

frequency: 120 min

 $h = 0 \rightarrow 22$

 $k = 0 \rightarrow 24$

 $l = 0 \rightarrow 8$

w = $1/[\sigma^2(F_o^2) + (0.1375P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.005$ $\Delta\rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Selected torsion angles ($^{\circ}$) for (I).

C8-C1-C2-C3 C1-C2-C3-C4	114.4(4) -41.1(5)	C4-C5-C6-C7 C5-C6-C7-C8	-76.8(7) 93.2(6)
C1 - C2 - C3 - C4 - C5	-60.3(6)	$C_{0} = C_{0} = C_{1} = C_{0}$ $C_{0} = C_{1} = C_{0}$	-58.1 (6)
C3-C4-C5-C6	90.5 (7)	C2-C1-C8-C7	-42.0 (5)

Compound (II)

Crystal data

 $\begin{array}{l} C_{16}H_{28}O_3 \\ M_r = 268.38 \\ \text{Monoclinic, } P2_1 \\ a = 10.368 (3) \text{ Å} \\ b = 16.3349 (14) \text{ Å} \\ c = 10.211 (3) \text{ Å} \\ \beta = 116.614 (12)^\circ \\ V = 1546.1 (7) \text{ Å}^3 \\ Z = 4 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffract-
ometer
ω –2 θ scans
4876 measured reflections
4647 independent reflections
3562 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.0128$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.111$ S = 1.0644647 reflections 503 parameters H atoms treated by a mixture of independent and constrained refinement

Table 2

Selected torsion angles (°) for (II).

C8A-C1A-C2A-C3A	95.1 (3)	C8B-C1B-C2B-C3B	95.9 (2)
C1A-C2A-C3A-C4A	-63.0(3)	C1B-C2B-C3B-C4B	-62.8(3)
C2A-C3A-C4A-C5A	65.1 (3)	C2B-C3B-C4B-C5B	65.1 (3)
C3A-C4A-C5A-C6A	-106.6(3)	C3B-C4B-C5B-C6B	-106.9(3)
C4A-C5A-C6A-C7A	49.8 (3)	C4B-C5B-C6B-C7B	49.7 (3)
C5A-C6A-C7A-C8A	58.5 (3)	C5B-C6B-C7B-C8B	58.7 (3)
C6A-C7A-C8A-C1A	-68.6(3)	C6B-C7B-C8B-C1B	-68.0(3)
C2A - C1A - C8A - C7A	-36.9 (3)	C2B-C1B-C8B-C7B	-38.0 (3)

$D_x = 1.153 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 11.58-13.98^{\circ}$ $\mu = 0.077 \text{ mm}^{-1}$ T = 293 (2) K Needle, colourless $0.70 \times 0.30 \times 0.20 \text{ mm}$

 $\begin{aligned} \theta_{\max} &= 29.98^{\circ} \\ h &= -14 \rightarrow 13 \\ k &= 0 \rightarrow 22 \\ l &= 0 \rightarrow 14 \\ 3 \text{ standard reflections} \\ \text{frequency: } 120 \text{ min} \\ \text{intensity decay: } 3.0\% \end{aligned}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0713P)^{2} + 0.0858P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = -0.001$ $\Delta\rho_{\text{max}} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.15 \text{ e} \text{ Å}^{-3}$

Table 3

Hydrogen-bonding geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O12A - H12A \cdots O15B^{i} \\ O12B - H12B \cdots O15A^{ii} \end{array}$	0.79 (4)	2.25 (4)	2.937 (3)	146 (4)
	0.82 (4)	2.19 (4)	2.912 (3)	148 (3)

Symmetry codes: (i) x - 1, y, z; (ii) x, y, z - 1.

In (II), atoms C17B and C17C (0.50:0.50) were disordered. The positions of all the H atoms, except methyl H and disordered methylene H atoms, were refined in the final calculations. The methyl and the methylene H atoms were calculated geometrically. Friedel pairs were not measured for (I) and a few (229) for (II). Refinement of the absolute structure parameter is meaningless for this combination of chemical composition and X-ray wavelength; the absolute configurations are deduced from those of the chemical precursors.

For both compounds, data collection: *CAD-4 Software* (Enraf-Nonius, 1989); cell refinement: *CAD-4 Software* (Enraf-Nonius, 1989); data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993); software used to prepare material for publication: *SHELXL*93 (Sheldrick, 1993).

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Maeda, K. & Inouye, Y. (1994). Bull. Chem. Soc. Jpn, 67, 2880–2882.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.